

University of Bern Social Sciences Working Paper No. 29

Customizing Stata graphs made easy

Ben Jann

This paper is forthcoming in the Stata Journal.

Current version: April 18, 2018
First version: October 16, 2017

http://ideas.repec.org/p/bss/wpaper/29.html
http://econpapers.repec.org/paper/bsswpaper/29.htm

Faculty of Business, Economics and
Social Sciences

Department of Social Sciences

University of Bern
Department of Social Sciences
Fabrikstrasse 8
CH-3012 Bern

Tel. +41 (0)31 631 48 11
Fax +41 (0)31 631 48 17
info@sowi.unibe.ch
www.sowi.unibe.ch

Customizing Stata graphs made easy

Ben Jann
University of Bern

Abstract. The overall look of Stata’s graphs is determined by so-called scheme
files. Scheme files are system components, that is, they are part of the local
Stata installation. In this note I argue that style settings deviating from default
schemes should be part of the script producing the graphs, rather than being kept
in separate scheme files, and I present a simple tool called grstyle that supports
such practice.

Keywords: st0001, grstyle, graph, graphics, scheme files

1 Introduction

Graphs are ubiquitous in scientific research. They serve many purposes, be it in data
analysis or presentation of results. Depending on properties of the data, the type of
analysis, the nature of results, the context in which graphs are used, or the audience to
which the graphs are presented, graphs may look very di↵erently. There is no universal
best style for graphs that serves all purposes and in many cases the style of graphs has
to be tailored to the specific application. To reduce the amount of typing required to
generate graphs conforming to a particular overall look, Stata features so called scheme
files. Scheme files contain a series of statements that define the default shape, color,
and size of the various elements that make up a graph. There are a number of o�cial
scheme files, such as s2color (the factory default), sj, or s1mono, that are part of
any Stata installation (see [G-4] schemes intro), but users also have the possibility to
create additional scheme files for their own needs and add them to the system. Fur-
thermore, some users provide custom scheme files for public use that can, for example,
be obtained from the Stata Journal net site or the SSC Archive (see [R] ssc). Exam-
ples are Juul (2003); Newson (2005); Atz (2011); Briatte (2013); Morris (2013, 2015);
Bischof (2017a,b). Furthermore, Buchanan (2015) provides a very powerful framework
for generating new schemes.

In essence, scheme files are system components that can be added to the local in-
stallation to extend Stata’s functionality. Adding custom schemes to the system may
make sense if one regularly produces specific types of graphs that di↵er substantially
from the default looks provided by o�cial Stata. In many cases, however, just a few
small modifications of a default scheme would do. In such cases, I believe that the style
settings determining the look of the graphs should be part of the script producing the
graphs. Having to maintain a separate scheme file is unnecessarily complicated and,
what is worse, may prevent researchers from customizing their graphs at all.

In this note I present a new command called grstyle that allows users to customize
the overall look of graphs from within a do-file without having to fiddle around with

1

2 Customizing Stata graphs made easy

external scheme files. The advantage of using grstyle over manually editing a scheme
file is that everything needed to reproduce the graphs can be included in a single do-
file. No scheme files have to be copied around, for example, if the graphs are to be
reproduced on a di↵erent computer.

grstyle does nothing that could not be done by manually editing a scheme file. In
fact, grstyle simply creates a scheme file on the fly and loads it as the default scheme.
The di↵erence is that handling the scheme file is fully automated and the user does not
have to worry about it. In this way, grstyle makes customizing Stata graphs easy.

2 Syntax

Syntax and usage of grstyle are as follows:

set scheme schemename

grstyle init
⇥
newscheme, path(path) replace

⇤

grstyle scheme entry

...

graph command

...

grstyle clear
⇥
, erase

⇤

First select a scheme to be used as basis for the custom style settings; see [G-2] set
scheme. The default scheme according to factory settings is s2color. Hence, s2color
will be used as basis if you omit the set scheme command.

After that, initialize the custom settings typing grstyle init. Optionally, if
newscheme is specified, a new scheme containing the custom settings will be created
and stored in file scheme-newscheme.scheme in the current working directory; option
path() specifies an alternative directory for storing the scheme file,1 option replace al-
lows overwriting the file if it already exists. If newscheme is omitted, grstyle manages
the settings in the background; path() and replace are not allowed in this case.

Then record the custom style settings using one or more grstyle scheme entry

commands. The syntax of scheme entry is described in help scheme entries; see
below for examples.

After recording the desired settings, run the commands creating your graphs.

1. An absolute or relative path may be provided in path(). Note that the graphs using the scheme
will only display correctly if the scheme file is stored in a location where it is found by Stata; see
[U] 17.5 Where does Stata look for adofiles? and [P] sysdir.

Ben Jann 3

At the end, if you want to drop the custom settings, type grstyle clear. grstyle
clear is only needed if you want to restore the original settings within the same Stata
session; changes made by grstyle are temporary and restarting Stata will remove the
custom settings (furthermore, grstyle init automatically runs grstyle clear before
initializing new settings).2 Option erase causes the scheme file created by grstyle to
be erased from disk. Use this option if you specified newscheme when calling grstyle

init and do not want to hold on to the scheme file. The default is not to erase the
scheme file.

Two more commands are available. grstyle type views the current settings; it
types the contents of the custom scheme file to Stata’s results window. Furthermore,
grstyle set provides precoded collections of scheme entries and automizes handling
certain attributes such as colors or sizes. grstyle set is discussed in Jann (2018).

3 Examples

Basic usage

Say, you want the size of your graphs to be 2 by 2 inches instead of Stata’s default 5.5 by
4 inches. Instead of adding options ysize(2) and xsize(2) to each graph command,
you could use grstyle as follows:

. set scheme s2color

. grstyle init

. grstyle graphsize x 2

. grstyle graphsize y 2

. sysuse auto

(1978 Automobile Data)

. scatter price weight

0
5,

00
0

10
,0

00
15

,0
00

Pr
ic

e

2,000 3,000 4,000 5,000
Weight (lbs.)

2. However, note that clear all will not clear grstyle’s graph settings. You need to type grstyle

clear, or restart Stata, to remove the settings.

4 Customizing Stata graphs made easy

. scatter price mpg

0
5,

00
0

10
,0

00
15

,0
00

Pr
ic

e

10 20 30 40
Mileage (mpg)

. grstyle clear

Some useful scheme entries

As illustrated, the usage of grstyle is straightforward and simple. The real di�culty,
of course, is to know how the scheme entries have to look like. Type

. help scheme entries

to view the corresponding documentation. Scheme entries have their own idiosyncratic
syntax, but the documentation is well structured and it usually does not take long to find
the relevant information. Here is an example that illustrates a number of modifications
I find useful:3

. set scheme s2color

. grstyle init

• change the graph size

. grstyle graphsize x 3.575

. grstyle graphsize y 2.6

• get rid of background shading

. grstyle color background white

• use horizontal text for tick labels on the Y (vertical) axis (the s2color default is
to use vertical text, which makes the labels hard to read)

. grstyle anglestyle vertical_tick horizontal

3. Also see the schemes provided by Bischof (2017b) that contain, among other things, similar modi-
fications.

Ben Jann 5

• draw vertical grid lines, that is, draw grid lines on the X (horizontal) axis (the
s2color default is to draw horizontal grid lines only)

. grstyle yesno draw_major_hgrid yes

• always include minimum and maximum grid lines (by default, minimum and max-
imum gridlines are omitted if there is no data in the proximity of these grid lines;
I find this behavior odd, especially if producing a series of graphs that use the
same scale for the axes for sake of comparability)

. grstyle yesno grid_draw_min yes

. grstyle yesno grid_draw_max yes

• change color, width, and pattern of grid lines (by default, the gridlines have a
bluish color, the same color as the background; this no longer makes sense if the
background shading is removed)

. grstyle color major_grid gs8

. grstyle linewidth major_grid thin

. grstyle linepattern major_grid dot

• place the legend on the lower right of the plot region and remove the frame

. grstyle clockdir legend_position 4

. grstyle numstyle legend_cols 1

. grstyle linestyle legend none

• use thicker lines in line plots

. grstyle linewidth plineplot medthick

• make markers transparent (only for the first two plot styles for case of exposition;4

requires Stata 15)

. grstyle color p1markline navy%0

. grstyle color p1markfill navy%50

. grstyle color p2markline maroon%0

. grstyle color p2markfill maroon%50

• make confidence intervals transparent (requires Stata 15)

. grstyle color ci_area gs12%50

. grstyle color ci_arealine gs12%0

• now create some graphs using the modified style

4. Unfortunately, the colors have to be spelled out explicitly for each plot style and it does not seem to
be possible to just make all markers transparent while keeping the default colors; type viewsource

scheme-s2color.scheme and look for entries such as color p1 etc. to find out what the default
colors are.

6 Customizing Stata graphs made easy

. sysuse auto

(1978 Automobile Data)

. twoway (scatter price weight if foreign==0) ///

> (scatter price weight if foreign==1) ///

> (lfitci price weight if foreign==0, clstyle(p1line)) ///

> (lfitci price weight if foreign==1, clstyle(p2line)) ///

> , legend(order(1 "domestic" 2 "foreign"))

0

5,000

10,000

15,000

2,000 3,000 4,000 5,000
Weight (lbs.)

domestic
foreign

. twoway (scatter price mpg if foreign==0) ///

> (scatter price mpg if foreign==1) ///

> (lfitci price mpg if foreign==0, clstyle(p1line)) ///

> (lfitci price mpg if foreign==1, clstyle(p2line)) ///

> , legend(order(1 "domestic" 2 "foreign"))

0

5,000

10,000

15,000

10 20 30 40
Mileage (mpg)

domestic
foreign

Ben Jann 7

Absolute text sizes and line widths

In some situations, for example, due to requirements by a publisher, one needs to set
text sizes and line widths to specific absolute values. This is di�cult to accomplish in
Stata because the sizes of objects on a graph are determined relative to the size of the
graph. That is, if you change the graph size, text sizes and line widths may change, and
given a specific graph size it is di�cult to know how large exactly the text sizes and line
widths will happen to be.

If you want to control the absolute size of text and line widths you need to create
a scheme that sets the relative sizes in a way such that for a given graph dimension
the specified relative sizes lead to the desired absolute sizes. Furthermore, you need to
create one such scheme for each graph size you intend to use. The formula to compute
the relative sizes is not di�cult, but it is a lot of work to do the computations and
compile the corresponding schemes manually.

More convenient is to change the settings on the fly using grstyle. The width
and height of Stata graphs is expressed in inches. One inch is equal to 72 points (or
2.54 centimeters). Relative sizes are expressed in percent of the minimum of width and
height of the graph. That is, if a graph is 5.5 inches wide and 4 inches high, then the
reference size is 4 inches (or 4 · 72 = 288 points) and a relative size of, say, 5 is equal to
5 · (4 · 72)/100 = 14.4 points. Conversely, if you want the size of an object on this graph
to be 10 points, you need to set its relative size to 10/(4 · 72) · 100 = 3.472222. Here is
an example in which grstyle is used to set various text sizes and line widths according
to this formula. The goal is to construct a graph that is 9 cm wide and 7 cm high, uses
0.5 pt lines for axes etc., and uses text sizes between 6 and 10 points depending on
object:5

. local xsize = 9 / 2.54 // 9cm wide

. local ysize = 7 / 2.54 // 7cm high

. local rsize = min(`xsize', `ysize') // reference size

. foreach pt in .5 3 6 8 10 { // compute relative sizes

2. local nm: subinstr local pt "." "_" // so that ".#" is "_#"

3. local `nm'pt = `pt' /(`rsize'*72)*100
4. }

. grstyle init

. grstyle graphsize x `xsize'

. grstyle graphsize y `ysize'

. grstyle gsize heading `10pt' // title

. grstyle gsize subheading `8pt' // subtitle

. grstyle gsize axis_title `8pt'

. grstyle gsize tick_label `6pt'

. grstyle gsize key_label `8pt' // key labels in legend

. grstyle gsize plabel `6pt' // marker labels

5. The list of scheme entries in this example covers some of the most common elements, but is
not exhaustive. Depending on application you may need to set the size of additional elements.
Furthermore, to fully control the layout of the graph you would also have to set elements such as
gaps, margins, and tick length.

8 Customizing Stata graphs made easy

. grstyle gsize text_option `6pt' // added text

. grstyle symbolsize p `3pt' // marker symbols

. grstyle linewidth axisline `_5pt'

. grstyle linewidth tick `_5pt'

. grstyle linewidth major_grid `_5pt'

. grstyle linewidth legend `_5pt' // legend outline

. grstyle linewidth xyline `_5pt' // added lines

. sysuse auto

(1978 Automobile Data)

. generate str mlab = "Marker label (6pt)" if price>15000

(73 missing values generated)

. twoway (scatter price weight, mlabel(mlab)), title("Title (10pt)") ///

> subtitle("Subtitle (8pt)") xtitle("X axis title (8pt)") ///

> ytitle("Y axis title (8pt)") legend(on order(1 "Legend key (8pt)")) ///

> text(12500 2400 "Added text (6pt)") xline(4000)

Marker label (6pt)

Added text (6pt)

0
5,

00
0

10
,0

00
15

,0
00

Y
ax

is
 ti

tle
 (8

pt
)

2,000 3,000 4,000 5,000
X axis title (8pt)

Legend key (8pt)

Subtitle (8pt)
Title (10pt)

To generate a graph with di↵erent dimensions that uses the same sizes for text and
line widths, simply change the xsize and ysize macros on the first two lines. An
alternative is to wrap the grstyle commands into a little program as follows:

program graphsetup

args x y

local xsize = `x' / 2.54

local ysize = `y' / 2.54

local rsize = min(`xsize', `ysize')
foreach pt in .5 3 6 8 10 {

local nm: subinstr local pt "." "_"

local `nm'pt = `pt' /(`rsize'*72)*100
}

grstyle init

grstyle graphsize x `xsize'
grstyle graphsize y `ysize'

Ben Jann 9

grstyle gsize heading `10pt'
grstyle gsize subheading `8pt'
grstyle gsize axis_title `8pt'
grstyle gsize tick_label `6pt'
grstyle gsize key_label `8pt'
grstyle gsize plabel `6pt'
grstyle gsize text_option `6pt'
grstyle symbolsize p `3pt'
grstyle linewidth axisline `_5pt'
grstyle linewidth tick `_5pt'
grstyle linewidth major_grid `_5pt'
grstyle linewidth legend `_5pt'
grstyle linewidth xyline `_5pt'

end

You can then use the program to quickly switch between di↵erent graph dimensions,
while keeping text sizes and line widths fixed:

. graphsetup 9 7 // 9cm wide and 7cm high

. graph commands

. graphsetup 9 12 // 9cm wide and 12cm high

. graph commands

. etc.

It is not necessary to run grstyle clear between the graphsetup commands be-
cause grstyle init, which is called within graphsetup, will clear the previous settings.

4 Limitations and further remarks

Unless a custom scheme name is specified, grstyle works by creating a new scheme
called GRSTYLE and storing it in file scheme- GRSTYLE .scheme in the PERSONAL ado-
file directory (see [U] 17.5.2 Where is my personal adodirectory? and [P] sysdir).
The relevance of this information is that there may be two complications:

• Stata must have writing rights in the PERSONAL ado-file directory. Furthermore,
if the PERSONAL ado-file directory does not exist, Stata must have the necessary
rights to create the directory.

• If multiple Stata sessions are executed in parallel and the sessions use the same
PERSONAL ado-file directory, then the grstyle commands in the di↵erent sessions
will all write to the same file. To keep the style settings distinct in this case it
may be a good idea to provide a unique custom scheme name with grstyle init

in each session.

Furthermore, note that grstyle does not check whether a submitted style setting is
a valid scheme entry. It just copies the provided specification to the temporary scheme
file as is. Hence, if you misspell the scheme entry, no warning message will be displayed
by grstyle. Whether a subsequent graph command will display an error or just ignore
the misspelled scheme entry depends on context. Scheme entries have the following
syntax:

10 Customizing Stata graphs made easy

attribute element style

An example is “color background white”, where “color” is the attribute to be set,
“background” is the graph element to be a↵ected, and “white” is the desired style. If
you misspell attribute or element (that is, if you specify an attribute or element that is
unknown to Stata), the most likely thing to happen is that the graph command ignores
the scheme entry: it will have no e↵ect and no warning message will be displayed.
If you misspell style, di↵erent things may happen. If the graph does not contain the
a↵ected element, the scheme entry will again be ignored and no warning message will be
displayed. Otherwise, the graph command will either abort with error (for example, if
style is a numeric value and you specify a value outside of the allowed range) or display
a warning message stating that the style has not been found and that default attributes
will be used for the graph. In any case, if a graph does not seem to adopt your style
settings, it is always a good idea to double-check the spelling of your scheme entries.

Another reason for why your style settings may not have an e↵ect is that some of
the higher-level graph commands (i.e., commands other than graph that internally call
graph) apply explicit style settings to certain elements and, hence, override the de-
faults provided by grstyle. An example is marginsplot that internally applies option
pstyle(p1) (or pstyle(p2) etc. depending on context) to the confidence intervals, so
that point estimates and confidence intervals are displayed using the same style. This
makes it di�cult to modify point estimates and confidence intervals individually. For
example, if you apply option recastci(rarea) to marginsplot so that the confidence
intervals are displayed as areas instead of capped spikes, using gstyle to set the at-
tributes of elements p1area and p1arealine will have no e↵ect unless you also add
option ci1opts(astyle(p1area)) to marginsplot. If your graph contains multiple
series of estimates and you want all confidence areas to look the same, it is probably
easiest to set the attributes of the ci elements (see help scheme ci plots) and then
add option ciopts(astyle(ci)) to marginsplot.

Finally, note that grstyle maintains global macros GRSTYLE FN (path and name
of the scheme file used to store the custom settings), GRSTYLE SN (the corresponding
scheme name), GRSTYLE SN0 (name of the scheme that was active when initializing
grstyle), and, depending on context, GRSTYLE RSIZE (the reference size for size calcu-
lation by grstyle set; see Jann 2018). Do not modify these globals. To remove the
globals and restore the initial settings, type grstyle clear.

5 References

Atz, U. 2011. SCHEME TUFTE: Stata module to provide a Tufte-inspired graphics
scheme. Statistical Software Components S457285, Boston College Department of
Economics. Available from https://ideas.repec.org/c/boc/bocode/s457285.html.

Bischof, D. 2017a. G538SCHEMES: module to provide graphics
schemes for http://fivethirtyeight.com. Statistical Software Compo-
nents S458404, Boston College Department of Economics. Available from

Ben Jann 11

https://ideas.repec.org/c/boc/bocode/s458404.html.

———. 2017b. New graphic schemes for Stata: plotplain and plottig. The Stata Journal

17(3): 748–759.

Briatte, F. 2013. SCHEME-BURD: Stata module to provide a ColorBrewer-inspired
graphics scheme with qualitative and blue-to-red diverging colors. Statistical Soft-
ware Components S457623, Boston College Department of Economics. Available from
https://ideas.repec.org/c/boc/bocode/s457623.html.

Buchanan, B. 2015. BREWSCHEME: Stata module for generating customized graph
scheme files. Statistical Software Components S458050, Boston College Department
of Economics. Available from https://ideas.repec.org/c/boc/bocode/s458050.html.

Jann, B. 2018. Customizing Stata graphs made even easier. Uni-
versity of Bern Social Sciences Working Papers 30, available from
http://ideas.repec.org/p/bss/wpaper/30.html.

Juul, S. 2003. Lean mainstream schemes for Stata 8 graphics. The Stata Journal 3(3):
295–301.

Morris, T. 2013. SCHEME-MRC: Stata module to provide graphics
scheme for UK Medical Research Council. Statistical Software Compo-
nents S457703, Boston College Department of Economics. Available from
https://ideas.repec.org/c/boc/bocode/s457703.html.

———. 2015. SCHEME-TFL: Stata module to provide graph scheme, based on
Transport for London’s corporate colour pallette. Statistical Software Com-
ponents S458103, Boston College Department of Economics. Available from
https://ideas.repec.org/c/boc/bocode/s458103.html.

Newson, R. 2005. SCHEME RBN1MONO: Stata module to provide min-
imal monochrome graphics schemes. Statistical Software Components
S456505, Boston College Department of Economics. Available from
https://ideas.repec.org/c/boc/bocode/s456505.html.

About the author

Ben Jann is Professor of Sociology at the University of Bern, Switzerland. His research interests

include social-science methodology, statistics, social stratification, and labor market sociology.

He is principle investigator of TREE, a large-scale multi-cohort panel study in Switzerland on

transitions from education to employment (www.tree.unibe.ch).

	Customizing Stata graphs made easyto.44em.Ben Jann

